背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
深度神经网络(DNN)应用越来越多地成为我们日常生活的一部分,从医疗应用到自动车辆。 DNN的传统验证依赖于准确度措施,然而,对抗示例的存在突出了这些准确度措施的局限性,特别是当DNN集成到安全关键系统中时提出担忧。在本文中,我们呈现HOMRS,一种通过自动构建从一组初始变质关系构建小型优化的高阶变质关系来提振变质测试的方法。 Homrs的骨干是一个多目标搜索;它利用传统系统测试中绘制的想法,例如代码覆盖,测试用例,路径分集以及输入验证。我们将HOMRS应用于MNIST / LENET和SVHN / VGG,我们报告了它的证据表明它建立了一个小而有效的高阶变换,概括到输入数据分布很好。此外,与诸如DeepXplore的类似的生成技术相比,我们表明我们的分发的方法更有效,从不确定量化的观点产生有效的变换,同时通过利用方法的泛化能力来实现更少的计算时间。
translated by 谷歌翻译
Thorough testing of safety-critical autonomous systems, such as self-driving cars, autonomous robots, and drones, is essential for detecting potential failures before deployment. One crucial testing stage is model-in-the-loop testing, where the system model is evaluated by executing various scenarios in a simulator. However, the search space of possible parameters defining these test scenarios is vast, and simulating all combinations is computationally infeasible. To address this challenge, we introduce AmbieGen, a search-based test case generation framework for autonomous systems. AmbieGen uses evolutionary search to identify the most critical scenarios for a given system, and has a modular architecture that allows for the addition of new systems under test, algorithms, and search operators. Currently, AmbieGen supports test case generation for autonomous robots and autonomous car lane keeping assist systems. In this paper, we provide a high-level overview of the framework's architecture and demonstrate its practical use cases.
translated by 谷歌翻译
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.
translated by 谷歌翻译
In this work, we devise robust and efficient learning protocols for orchestrating a Federated Learning (FL) process for the Federated Tumor Segmentation Challenge (FeTS 2022). Enabling FL for FeTS setup is challenging mainly due to data heterogeneity among collaborators and communication cost of training. To tackle these challenges, we propose Robust Learning Protocol (RoLePRO) which is a combination of server-side adaptive optimisation (e.g., server-side Adam) and judicious parameter (weights) aggregation schemes (e.g., adaptive weighted aggregation). RoLePRO takes a two-phase approach, where the first phase consists of vanilla Federated Averaging, while the second phase consists of a judicious aggregation scheme that uses a sophisticated reweighting, all in the presence of an adaptive optimisation algorithm at the server. We draw insights from extensive experimentation to tune learning rates for the two phases.
translated by 谷歌翻译
The study proposes and tests a technique for automated emotion recognition through mouth detection via Convolutional Neural Networks (CNN), meant to be applied for supporting people with health disorders with communication skills issues (e.g. muscle wasting, stroke, autism, or, more simply, pain) in order to recognize emotions and generate real-time feedback, or data feeding supporting systems. The software system starts the computation identifying if a face is present on the acquired image, then it looks for the mouth location and extracts the corresponding features. Both tasks are carried out using Haar Feature-based Classifiers, which guarantee fast execution and promising performance. If our previous works focused on visual micro-expressions for personalized training on a single user, this strategy aims to train the system also on generalized faces data sets.
translated by 谷歌翻译
To analyze this characteristic of vulnerability, we developed an automated deep learning method for detecting microvessels in intravascular optical coherence tomography (IVOCT) images. A total of 8,403 IVOCT image frames from 85 lesions and 37 normal segments were analyzed. Manual annotation was done using a dedicated software (OCTOPUS) previously developed by our group. Data augmentation in the polar (r,{\theta}) domain was applied to raw IVOCT images to ensure that microvessels appear at all possible angles. Pre-processing methods included guidewire/shadow detection, lumen segmentation, pixel shifting, and noise reduction. DeepLab v3+ was used to segment microvessel candidates. A bounding box on each candidate was classified as either microvessel or non-microvessel using a shallow convolutional neural network. For better classification, we used data augmentation (i.e., angle rotation) on bounding boxes with a microvessel during network training. Data augmentation and pre-processing steps improved microvessel segmentation performance significantly, yielding a method with Dice of 0.71+/-0.10 and pixel-wise sensitivity/specificity of 87.7+/-6.6%/99.8+/-0.1%. The network for classifying microvessels from candidates performed exceptionally well, with sensitivity of 99.5+/-0.3%, specificity of 98.8+/-1.0%, and accuracy of 99.1+/-0.5%. The classification step eliminated the majority of residual false positives, and the Dice coefficient increased from 0.71 to 0.73. In addition, our method produced 698 image frames with microvessels present, compared to 730 from manual analysis, representing a 4.4% difference. When compared to the manual method, the automated method improved microvessel continuity, implying improved segmentation performance. The method will be useful for research purposes as well as potential future treatment planning.
translated by 谷歌翻译
随着车身可穿戴感应技术的发展,人类活动的识别已成为一个有吸引力的研究领域。借助舒适的电子质地,传感器可以嵌入衣服中,以便可以长期记录人类运动。但是,一个长期存在的问题是如何处理通过相对于身体运动引入的运动人工制品。令人惊讶的是,最近的经验发现表明,与刚性连接的传感器相比,与固定的传感器相比,布置的传感器实际上可以实现更高的活动识别精度,尤其是在从短时间窗口中预测时。在这项工作中,引入了概率模型,其中通过织物传感记录的运动之间的统计距离增加了这种提高的准确性和呼吸。模型的预测在模拟和真实的人类运动捕获实验中得到了验证,很明显,这种反直觉效应是紧密捕获的。
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
由于存在对抗性攻击,因此在安全至关重要系统中使用神经网络需要安全,可靠的模型。了解任何输入X的最小对抗扰动,或等效地知道X与分类边界的距离,可以评估分类鲁棒性,从而提供可认证的预测。不幸的是,计算此类距离的最新技术在计算上很昂贵,因此不适合在线应用程序。这项工作提出了一个新型的分类器家族,即签名的距离分类器(SDC),从理论的角度来看,它直接输出X与分类边界的确切距离,而不是概率分数(例如SoftMax)。 SDC代表一个强大的设计分类器家庭。为了实际解决SDC的理论要求,提出了一种名为Unitary级别神经网络的新型网络体系结构。实验结果表明,所提出的体系结构近似于签名的距离分类器,因此允许以单个推断为代价对X进行在线认证分类。
translated by 谷歌翻译